Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(4): 148, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462558

RESUMO

Pseudomonas aeruginosa is an opportunistic gram-negative pathogenic microorganism that poses a significant challenge in clinical treatment. Antibiotics exhibit limited efficacy against mature biofilm, culminating in an increase in the number of antibiotic-resistant strains. Therefore, novel strategies are essential to enhance the effectiveness of antibiotics against Pseudomonas aeruginosa biofilms. D-histidine has been previously identified as a prospective anti-biofilm agent. However, limited attention has been directed towards its impact on Pseudomonas aeruginosa. Therefore, this study was undertaken to explore the effect of D-histidine on Pseudomonas aeruginosa in vitro. Our results demonstrated that D-histidine downregulated the mRNA expression of virulence and quorum sensing (QS)-associated genes in Pseudomonas aeruginosa PAO1 without affecting bacterial growth. Swarming and swimming motility tests revealed that D-histidine significantly reduced the motility and pathogenicity of PAO1. Moreover, crystal violet staining and confocal laser scanning microscopy demonstrated that D-histidine inhibited biofilm formation and triggered the disassembly of mature biofilms. Notably, D-histidine increased the susceptibility of PAO1 to amikacin compared to that in the amikacin-alone group. These findings underscore the efficacy of D-histidine in combating Pseudomonas aeruginosa by reducing biofilm formation and increasing biofilm disassembly. Moreover, the combination of amikacin and D-histidine induced a synergistic effect against Pseudomonas aeruginosa biofilms, suggesting the potential utility of D-histidine as a preventive strategy against biofilm-associated infections caused by Pseudomonas aeruginosa.


Assuntos
Amicacina , Infecções por Pseudomonas , Humanos , Amicacina/farmacologia , Amicacina/metabolismo , Amicacina/uso terapêutico , Pseudomonas aeruginosa , Histidina/farmacologia , Histidina/metabolismo , Histidina/uso terapêutico , Biofilmes , Percepção de Quorum , Antibacterianos/química , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/metabolismo
2.
Antimicrob Agents Chemother ; 67(7): e0030723, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37272814

RESUMO

Pseudomonas aeruginosa can form biofilms at the site of burn wound, leading to infection and the failure of treatment regimens. The previous in vitro study demonstrated that a combination of the quorum-quenching enzyme AidHA147G and the extracellular matrix hydrolase PslG was effective in inhibiting biofilm and promoting antibiotic synergy. The aim of the present study was to evaluate the efficacy of this combination of enzymes in conjunction with tobramycin in treating burn wound infected with P. aeruginosa. The results showed that this treatment was effective in quorum-quenching and biofilm inhibition on infected wounds. Compared with the tobramycin treatment only, simultaneous treatment with the enzymes and antibiotics significantly reduced the severity of tissue damage, decreased the bacterial load, and reduced the expression of the inflammatory indicators myeloperoxidase (MPO) and malondialdehyde (MDA). Topical application of the enzymes also reduced the bacterial load and inflammation to some extent. These results indicate that the combined-enzyme approach is a potentially effective treatment for P. aeruginosa biofilm infections of burn wounds.


Assuntos
Queimaduras , Doenças Transmissíveis , Infecções por Pseudomonas , Infecção dos Ferimentos , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Biofilmes , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Infecção dos Ferimentos/microbiologia
3.
Antimicrob Agents Chemother ; 67(1): e0135822, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602373

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms during infection, resulting in recalcitrance to antibiotic treatment. Biofilm inhibition is a promising research direction for the treatment of biofilm-associated infections. Here, a combined-enzyme biofilm-targeted strategy was put forward for the first time to simultaneously prevent biofilm formation and break down preformed biofilms. The N-acylhomoserine lactonase AidH was used as a quorum-sensing inhibitor and was modified to enhance the inhibitory effect on biofilms by rational design. Mutant AidHA147G exerted maximum activity at the human body temperature and pH and could reduce the expression of virulence factors as well as biofilm-related genes of P. aeruginosa. Subsequently, the P. aeruginosa self-produced glycosyl hydrolase PslG joined with AidHA147G to disrupt biofilms. Interestingly, under the combined-enzyme intervention for P. aeruginosa wild-type strain PAO1 and clinical strains, no biofilm was observed on the bottom of NEST glass-bottom cell culture dishes. The combination strategy also helped multidrug-resistant clinical strains change from resistant to intermediate or sensitive to many antibiotics commonly used in clinical practice. These results demonstrated that the combined-enzyme approach for inhibiting biofilms is a potential clinical treatment for P. aeruginosa infection.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Biofilmes , Percepção de Quorum , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...